Bayesian Approaches to the Problem of Sparse Tables in Log- Linear Modeling

نویسندگان

  • Francisca Galindo-Garre
  • Jeroen K. Vermunt
  • Manuel Ato-García
چکیده

This paper presents Bayesian approaches to parameter estimation in the log-linear analysis of sparse frequency tables. The proposed methods overcome the non-estimability problems that may occur when applying maximum likelihood estimation. A crucial point when using Bayesian methods is the specification of the prior distributions for the model parameters. We discuss the various possible priors and assess their influence on the parameter estimates by two empirical examples in which maximum likelihood estimation gives problems. For the practical implementation of the Bayesian estimation methods, we used a Metropolis algorithm.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inflation Behavior in Top Sukuk Issuing Countries: Using a Bayesian Log-linear Model

This paper focused on developing a model to study the effect of sukuk issuance on the inflation rate in top sukuk issuing Islamic economies at 2014‎. ‎For this purpose‎, ‎as the available sample size is small‎, ‎a Bayesian approach to regression model is used which contains key supply and demand side factors in addition to the outstanding sukuk volume as potential determinants of inflation rate...

متن کامل

Bayesian Nonparametric Disclosure Risk Estimation via Mixed Effects Log-linear Models

Statistical agencies and other institutions collect data under the promise to protect the confidentiality of respondents. When releasing microdata samples, the risk that records can be identified must be assessed. To this aim, a widely adopted approach is to isolate categorical variables key to the identification and analyze multi-way contingency tables of such variables. Common disclosure risk...

متن کامل

Exploring dependence between categorical variables: Benefits and limitations of using variable selection within Bayesian clustering in relation to log-linear modelling with interaction terms

This manuscript is concerned with relating two approaches that can be used to explore complex dependence structures between categorical variables, namely Bayesian partitioning of the covariate space incorporating a variable selection procedure that highlights the covariates that drive the clustering, and log-linear modelling with interaction terms. We derive theoretical results on this relation...

متن کامل

A Bayesian Nominal Regression Model with Random Effects for Analysing Tehran Labor Force Survey Data

Large survey data are often accompanied by sampling weights that reflect the inequality probabilities for selecting samples in complex sampling. Sampling weights act as an expansion factor that, by scaling the subjects, turns the sample into a representative of the community. The quasi-maximum likelihood method is one of the approaches for considering sampling weights in the frequentist framewo...

متن کامل

Comparison of Estimates Using Record Statistics from Lomax Model: Bayesian and Non Bayesian Approaches

This paper address the problem of Bayesian estimation of the parameters, reliability and hazard function in the context of record statistics values from the two-parameter Lomax distribution. The ML and the Bayes estimates based on records are derived for the two unknown parameters and the survival time parameters, reliability and hazard functions. The Bayes estimates are obtained based on conju...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000